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In Fock's reciprocal-space treatment of  the hydrogen atom, k-space is mapped onto the 
surface of a 4-dimensional hypersphere, and the solutions (apart from an invariant factor) are 
4-dimensional hyperspherical harmonics. Fock's method can be generalized to provide solu- 
tions for the Schr6dinger equation of a charged particle moving in a many-center Coulomb 
potential, and in this case the solutions are found by diagonalizing an overlap matrix involving 
products of hyperspherical harmonics. The present paper discusses a transform which can 
conveniently be used to evaluate the elements of the overlap matrix. 

1. In t roduc t ion  

Hyperspherical harmonics are eigenfunctions 
momentum operator 

A 2 Y a u = A ( ~ + d - 2 )  Yau, A = 0 , 1 , 2 , . . . ,  

of the generalized angular 

A2 =- - E x i - ~ x  i - xJ-~ixi " (1) 
i>j -- -' 

In eq. (1) we have used a notation which emphasizes the similarity between the 
hyperspherical harmonics Y~u and the spherical harmonics t3m. However, in the d- 
dimensional case, # is not a single index but stands for a set of indices representing 
eigenvalues of a complete set of operators which commute with A 2 and with each 
other. The choice of these operators is not unique, but in physical applications it is 
convenient to choose the set which commutes with the Hamiltonian of the system. 
Table 1 shows the first few hyperspherical harmonics for d = 4. (As we shall see 
below, the 4-dimensional hyperspherical harmonics play an important role in reci- 
procal-space quantum theory.) The index/z of eq. (1) stands for the two indices l 
and m in table 1. If the angles X, 0 and q~ are related to the unit vectors in a 4-dimen- 
sional space by 

U 1 = sin X sin 0 cos ~b, 
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Table 1 
4-dimensional hyperspherical harmonics and their associated hydrogenlike orbitals. 

A l m Y~lra II/~lrn(r) 

1 
0 0 0 

=v~ 

v~ 
1 0 0 - - u 4  

1 1 1 - ~ ( u l  +iu2) 

iv~ 
1 1 0 - - u s  

1 1 - 1  L(ul - i u2 )  

~ - '(1 k3 -- t) 

-V~-~e-  (tl + it2) 

V~--~e- (tl - it2) 

U 2  = sin X sin 0 sin ¢, 

U 3 = sin X cos 0, 

lg 4 = COS ~ (2) 

then the 4-dimensional hyperspherical harmonics can be written explicitly in the 
form 

CA(u) = Yxlm(U) = il N sin / X C[+~( cos X) Ylm( Ok, ~Pk ) , (3) 

where 

/2(2l)!!(A + 1)(A - l)!(2l + 1 )! 
N =  V ~--~-7- l ~ - + l  + 1)! ' (4) 

and where C~ is a Gegenbauer polynomial defined by 

1 ~ ( - - 1 ) tF (o~  + A -- t)(2u- u') A-2t 

u') - ,=0 t ! ( ; , :  (s) 

(In the theory of hyperspherical harmonics, Gegenbauer polynomials play a role 
analogous to that played by Legendre polynomials in the familiar theory of spheri- 
cal harmonics; and when o~ = 1/2, the Gegenbauer polynomials reduce to 
Legendre polynomials.) 
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Each of the familiar properties of spherical harmonics has a d-dimensional 
generalization; and it may be useful here to mention briefly a few of these proper- 
ties. The interested reader can find the theory of hyperspherical harmonics devel- 
oped in more detail in refs. [1] and [2]. 

The familiar expansion of the Green's function of the Laplacian operator in 
terms of Legendre polynomials: 

()' 1 1~-~ r< 
I x -  x'l - r> ,=0 7;-> Pt (u .  u') (6) 

has a d-dimensional generalization: 

1 1 ~-~ r< 
I x -  x'l ~-2 - 4 -2 ~=0 ; 7  cz(u-u'),  (7) 

where C~' is a Gegenbauer polynomial, a = d/2 - 1 and where u and td are unit vec- 
tors in the directions of the d-dimensional vectors x and x'. 

The hyperspherical harmonics obey a sum rule involving Gegenbauer poly- 
nomials: 

(2,~+ d -  2) 
r ; . ( u ' )  - C (u. (8)  

# 

where 

I(0) (9) 
2~d/2 dO-  F(-~) =- 

is the total solid angle, and where the sum y'~.~ is taken over all the eigenfunctions 
ofA 2 corresponding to the eigenvalue A(A + d - 2). This sum rule is the generaliza- 
tion of the familiar sum rule for spherical harmonics: 

E Y~m(U') Ylm(U) - -  2l + 1Pt(u. ~). (10) 47z m 

From eq. (8) it follows that 

E Y~,(u) / da"2' r;*u(u')F(u' ) O~[F(u)] 
# 

_ 2 ~ + £ - 2  [ dC~ C;( . . , ' IF(e)  (11) 
(d - 2)I(0) J 

is the component of F(ae) which is an eigenfunction of A 2 with the eigenvalue 
A ( A + d -  2). 

The degeneracy of the hyperspherical harmonics (i.e. the number of linearly 
independent eigenfunctions of A 2 corresponding to a particular value of A) can be 
shown tO be 
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(d + 2 A -  2)(), 4- d - 3)! 
w =  A ! ( d -  2)! (12) 

When  d = 3 and A = l, this becomes 

~v = 2l 4- 1, (13) 

while when  d = 4 ,  we have 

w = (A + 1) 2 . (14) 

2. T h e  h y d r o g e n  a t o m  in r ec ip roca l  space  

When  d = 4, the number  of  linearl~¢ independent  hyperspherical  ha rmonics  
belonging to a given value of  A is (A + 1) , i.e., 1, 4, 9, 16 , . . . ,  and  so o n -  exactly the 
same as the degeneracy of  the solutions to the Schr6dinger equat ion  for a hydrogen  
atom.  V. Fock  was, in fact, able to show that  the Four ier  t ransforms of  the hydro-  
gen a tom wave funct ions can be wri t ten in the form [3] 

~,l,m(k)=M(k)Yn-l,l,m(u), 

where ~2 is the solid angle in a 4-dimensional  space defined by the uni t  vectors 

2k0kl 
Ul-k~4-k2 - -  - sin X sin 0 cos ~b, 

(15) 

2kok2 
U2-k~4-k2 - -  - sin X sin 0 sin ~b, 

2kok3 
- - - s i n x c o s 0 ,  U 3 - k ~ o + k 2  

U4 k~ 0 + k  2 c o s x ,  (16) 

and  where  ~ = - 2 E .  The  funct ion M(k) is independent  of  the q u a n t u m  numbers  
and is given by 

M ( k ) -  4k~/2 
( ~  4- k2) 2" (17) 

Fock ' s  der ivat ion of  this result, expressed briefly, is as follows: The  Four ier  trans- 
fo rmed  Schr6dinger  equat ion  for a hydrogen  a tom is an integral equa t ion  which 
can be wri t ten in the fo rm 
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( ~  + Z2)2~,,(/~) _ Z f d~2 ( ~  + k2)2~ut(k) (18) 
2k0~ 2 ]u - u'l 2 ' 

where u and u ~ are unit vectors of the form shown in eq. (16). The integral over dS2 
is an integral over solid angle in a 4-dimensional space defined by these vectors. In 
other words, Fock's transformation, eq. (16), maps the 3-dimensional k-space 
onto the surface ofa hypersphere in a 4-dimensional space. If we let 

4k~/2 
g/(k)  - (kiT~-2) 2 ¢(u), 

then (18) takes on the simple form 

2~2k0Zf I u _1 ¢(u ' )  --  d O  u,i----- ¢ ( u ) .  
m 

From eq. (7) with d = 4 and a = 1, we have 

1 o~ 
ci (. .  u t ) 

y--" 
A=0 

(19) 

(20)  

(21) 

so that (20) becomes 

_ 2~TkoZ oo f dO Cl(u (22) • u ' ) C ( u ) .  

But from (11) we have 

d1"-2 C~(u.u ' )¢(u)  - ( d -  2)I(0) 
A ~ d -  20~[¢(u/)]  ' (23) 

where Oh is a projection operator corresponding to the Ath eigenvalue of A 2. 
When d = 4, 

( d -  2)I(0) _ 2n 2 (24) 
A + d - 2  A + I  

Thus we can rewrite (22) in the form 

oo Z 
¢(u) : --~--2~ k0(A' -t- 1) O~,[¢(u)]. (25) 

;g=l 

If we let 

¢(u) = Y),u(u), (26) 

then (25) becomes 

Z 
Y2'u(u) - k0(A + 1) Y2'u(u)' (27) 

which will be satisfied if 
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Z 
-- 1. (28) 

ko(,k + 1) 

Remembering that k 2 = -2E ,  and identifying A + 1 with n, we have 

Z 2 
E - 2n 2 (29) 

in agreement with the usual direct-space solution of the hydrogen atom problem. 
With the choice of phases shown in eq. (3) and (16), Fock's reciprocal-space solu- 
tions are related to the direct-space solutions through a Fourier transform 

l /  4k~/2 
(27i)3/2 d3k e ik'x (k02 + k2)2- Yn-l,l,m(U) = Rnl(r) Ylm(O, qS), (30) 

where 

Rnz = (2ko)3 /2N/e- tF( l  + 1 - n121 + 212t ) , (31) 

t - kor (32) 

and 

2' . /  (l + n)! 
N (33) (2t + V2n( -- J-- 

3. M a n y - c e n t e r  C o u l o m b  p o t e n t i a l s  

It has been shown by a number of authors [4-6] that Fock's approach can be gen- 
eralized in such a way as to yield solutions to the reciprocal-space Schr6dinger 
equation for a charged particle moving in the many-center potential: 

1 
V(x )  = - ~__Zj  l x _  Rj  [ (34) 

s 

If we again let the Fourier-transformed wave function, ~t(k)  be represented by 
eq. (19), then the equation analogous to (28) becomes 

1 f ei(k '-k)-Rs 

If we let 

7]r(U) ~ •jAlm(U) ~ ~ YMm(U) (36) 

and make use ofeqs. (21) and (8), we can rewrite (35) in the form 
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ko~b(u') = Z "(u~) f dO ,;(//)4(u).  (37) 
, /  

7" 

The functions tiT- (u) are not orthonormal, and we can let the matrix 

(.:.:,),,.i K~-,e = ()~ + 1)(,V + 1) dO eik(Rs '-Rs) Y;zm(U) Y~q'm'(U) (38) 

represent the overlap matrix between them. If we represent the solutions to (35) 
by a linear combination of the basis functions, so that 

cb(u) = y ~  ~77-(u)B,, (39) 
7" 

then (37) becomes 

ko Z rlT-(u')BT- = Z r/7-(u')KT-,e Be.  (40) 
7" % 7  a 

From the fact that the basis functions are linearly independent, it follows that the 
expansion coefficients must be solutions to the secular equations 

Z[KT-,e - &,eko]Bv = 0. (41) 

As a simple example to illustrate this method, we can consider an electron in 
the field of two nuclei with charges Z1 and Z2. In the lowest approximation, we can 
represent q$(//) by a linear combination of two basis functions, both with A = 0: 

~b(u) ~ r/1 (u)B 1 --[- r/2(u)B2, (42) 

where 

1 ~ eik.R~ r}l (//) = V ~ I  eik'Rl Yooo ~ 

1 ~ / ~  eik,Rz "2(//) ---~ V ~ 2  eikR' Y000 = ~ (43) 

Using methods which will be discussed in the next section, we find that 

1 / eik.(Rl_R2 ) t)e_ t 2~ 2 dO = (1 + , 

where 

t =-- koIR1 - R21 ~ koR12. 

Thus 

( " 
Kr,r' = ~ ( 1  + t)e -t 

~ ( 1  + t)e -t ) 
Zz 

(44) 

(45) 

(46) 
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so that the secular equations, (41), require that k0 and Rl2 satisfy 

2ko = Z1 + Z2 4- V/(z1 + Z2) 2 --]- 4Z1Z2[(1 4- t)2e -2t - 1], 

t 
R12 = ~00" (47) 

Letting the parameter  t run from 0 to oo, we can generate values of k0 and 
E = - ~ / 2  and the values of  R12 to which they correspond. In the limit t = 0 (and 
R12 = 0), we obtain the exact ground-state united-atom energy: 

(/1 "4- Z2) 2 
k0+ = Zl -t- Z2, E+ - 2 ' (48) 

while for t = oo, we obtain the exact separated-atom energies: 

k0+ = Z l  , E+ - Z12 
2 ' 

k o - = Z 2 ,  E _ -  Z~ (49) 
2 

For  intermediate values of t, the energies found from the approximate wave func- 
tion (42) differ appreciably from the exact energies. However,  when a larger num- 
ber of basis functions are used, the method outlined above is capable of  great 
accuracy. Koga  and Matsuhashi,  for example, were able to obtain 10-figure accu- 
racy by this method in calculations on the H~- ion [7]. 

As a second simple example, we can consider the orbital of an electron in the 
field of  three nuclei. If  we again use only basis functions with )~ = 0, the overlap 
matrix becomes 

( Zl 
K,,~-, = ~ ( 1  + t)e- '  

\ Zv'-Z-T~(1 + t')e -e 

where t - koR12, t a = koR13, and 

~ ( 1  + t)e -t 

Z3 

Zv/-Z~(1 + ( ')e -e' 

t" - koR23. By 

Zv/-Z-~lZ~(1 + t~)e -t' '~ 

Zv/-~3(1 + g')e -t" ) ' 

Z3 

(50) 

diagonalizing this matrix for 
values of  the parameters  t, f and t" running from 0 to oo, we obtain the orbitals and 
energies as functions of the internuclear distances. 

4. F o c k  t r ans fo rms  

F rom the discussion given above, we can see that integrals of the form 

S2/~,m,(R ) =- [ dO e ik'R rn*-l,l,,m,(U) Yn-l,l,m(U) 
J 

(51) 
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are of great importance in reciprocal-space quantum theory. In fact, as Monkhorst 
and Jeriorski have pointed out [4], the many-center one-particle Coulomb problem 
in reciprocal space reduces essentially to the problem of evaluating these inte- 
grals. In an early paper [4], Shibuya and Wulfman developed a method for their 
evaluation based on the R4 Wigner coefficients. In this paper we shall discuss an 
alternative method based on a transform defined by the relationship 

1 / aS2 eik'Rf(u) =jT(t) (52) 
2~ 2 

with t = koR.  To honour the pioneering work of Fock, we might call this a Fock  
transform. 

The solid-angle element in 4-dimensional space is given by 

dO = sin2x sin 0 dx dO dqS, (53) 

where X, 0 and ~b are defined by eq. (16). Since (from eq. (16)) 

2kok (54) 
sin X - k 2 + k2 , 

the solid-angle element can be written in the form 

/' 2ko ,~3 . ~ ( 2ko ,~3 
d n =  ~.k~-~k2)_ K - S l n U  dk dO dq~= \ k ~ - ~ 5  ] d3k. (55) 

From (16) it also follows that 

2 ~  (56) 
1 - u 4  - k o  2 + k 2  • 

Using eqs. (3), (55) and (56), together with the ratio 

---~= 2t(n +/)!x/~ (57) 
U (n - l - 1)!(2/+ 1)!2n(2l)!! 

of the normalization constants defined in eqs. (4) and (33), we can rewrite (30) in 
the form: 

1 /  1 
2~ 2 dr2 e ik'R pl+l 1 - u4 "~n-l-1 (u4)hl(uj) 

= 2(n + l ) !e- tF( l  + 1 - nl2l + 212t)hz(tj) (58) 
i t(2l+ 1 ) ! l ! n ( n - l -  1)! 

In(58), 

hl( tj) - t I Ylm( Ot, ~b,) (59) 

is an harmonic polynomial in h, t2, and t3, where t = koR,  while hl(uj) is the same 
harmonic polynomial as a function of Ul, u2, and u3. The information contained in 
eq. (58) can be expressed in a more convenient form by using the relationship [8] 
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l!P!~/~212p sT.~---+(P+I-4- 1-2s)~_~)! Cp_2s (u4) (60) u p : ~ ]7+-1 ,+1 . 

Combining (58) and (59) we obtain the Fock transform ofu~ht (uj): 

1 / dO eik'R~hl(uj) 
2X 2 

p!e-thl(tj) I~/~2(p + 2l + 1 -- 2s)lF(2s-p121 + 212t) 
-- 2Pit(2l + 1)! lZ-.aLs=0 sl(p + Z + 1 - s)!(p - 2s)l 

[(P~/2] (p + 2 + 2 l -  2 s ) l F ( 2 s - p -  112l + 212t) ] 
- ( p +  1) s.-~-(p+27~L-- ~ . t ~ +  1 - -2s~  ' (61) 

s=O 

where p is an integer and where ht is an arbitrary harmonic polynomial of order l. 
Particular examples of  the transforms ofeq. (61) are shown in tables 2 and 3. 

5. Discussion 

Equation (61) allows us to evaluate Fock transforms of functions of  the form 
~hl(u)), wherep  is an integer and hl(uj) is an harmonic polynomial of  order l in ul, 
u2, and u3, i.e., where ht is a homogeneous polynomial of order l satisfying 

3 O: 
(62) 

j=l Ou) 

However, in order to evaluate the overlap integrals needed in reciprocal-space 
quantum theory, we still need to relate these transforms to integrals of  the form 
shown in eq. (51). In simple cases, we can do this by hand, but in more  complicated 
cases, it is convenient to have a computer program to perform the necessary 

Table 2 
Fock transforms. 

f(u) 2~ / dY2 eik'gf(u) 

ht(uA 

u4hl(uj) 

~h~(uA 

2e-t(1 + t) hi(t)) 
it(l + 2)! 

2e-t(l + It - 2 
it(l + 3)! t ) ht(tj) 

2e-'[(l 2 + l + 3)(1 + t) - (2l + 2)t 2 + t 3] hl(tj) 
it(/+ 4)! 
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Table 3 
Fock transforms. 

f(u) 2~ / d~2 eik'Rf(u) 

1 e - t ( 1  + t) 

ul 2 e - t ( 1  + t)h 

2 
ulu2 4.~e-'(1 + t)tl t2 

2 
UlU2U3 5[i3 e-t(1 + t)tlt2t3 

/'/4 - -  l e - t t 2  
3 

1 t u4ul i -~e-  (1 + t - t2)tl 

l e - t (3  + 3 t -  2t 2 + t 3) 

algebraic operations. My co-worker, Frank Antonsen, and I have developed a com- 
puter program for performing algebraic operations on polynomials in many- 
dimensional spaces. In this program, a polynomial of the form 

m 

fa(X) -- ~-~ ajx~l'x~22...xn d (63) 
j = l  

is stored as an array of complex numbers, a(j), j = 1 , . . . ,  m, and an array of inte- 
gers, n(k,j),  k = 1 , . . . ,  d , j  = 1, . . . ,  m. The program calculates products, sums, dif- 
ferentials and so on by carrying out the appropriate operations on these arrays. 
From these elementary operations, the program builds up more complicated ones, 
such as harmonic projection [2]. Our program is thus able to calculate integrals of 
the form shown in eq. (51) from the Fock transforms ofeq. (61), thus avoiding the 
use of 4-dimensional Wigner coefficients. More generally, our program offers an 
alternative to the use of group-theoretical coupling coefficients in all problems 
involving angular or hyperangular functions. 

The reciprocal-space form of the Schr6dinger equation (with k-space projected 
onto the surface of a hypersphere) is less familiar than the usual direct-space form. 
However, in many applications, reciprocal-space quantum theory may offer 
advantages because of the simplicity of the wave functions. An interesting feature 
of the k-space secular equations (41) is that the roots are not energies but are 
instead Slater exponents of the optimal wave functions for representing particular 
states. The basis sets in this formulation are of the Sturmian type, i.e. they all 
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correspond to the same energy, E = - ~ / 2 ,  irrespective of  the quan tum numbers  
[9-12]. The constancy of  the energy corresponds to constancy of  the radius of  the 
hypersphere onto which k-space is projected by the Fock transformation.  In the 
present  paper,  we have discussed the one-particle many-center  Coulomb problem, 
but  analogous methods may  be used to treat many-part icle problems [12]. Because 
of  the promising results already obtained using these methods,  it seems likely that  
in the future they will prove to be very useful in quantum-chemistry.  
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